User Tools

Site Tools


tutorial:blockentity

This is an old revision of the document!


Adding a BlockEntity

Introduction

A BlockEntity is primarily used to store data within blocks. Before creating one, you will need a Block. This tutorial will cover the creation of your BlockEntity class, and it's registration.

Creating a BlockEntity

The simplest Block Entity simply extends BlockEntity, and uses the default constructor. This is perfectly valid, but will not grant any special functionality to your block.

public class DemoBlockEntity extends BlockEntity {
    public DemoBlockEntity(BlockPos pos, BlockState state) {
        super(ExampleMod.DEMO_BLOCK_ENTITY, pos, state);
    }
}

Below will show you how to create the ExampleMod.DEMO_BLOCK_ENTITY field.

You can simply add variables to this barebone class or implement interfaces such as Tickable and Inventory to add more functionality. Tickable provides a single tick() method, which is called once per tick for every loaded instance of your Block in the world., while Inventory allows your BlockEntity to interact with automation such as hoppers - there will likely be a separate tutorial dedicated entirely to this interface later.

Registering your BlockEntity

Once you have created the BlockEntity class, you will need to register it for it to function. The first step of this process is to create a BlockEntityType, which links your Block and BlockEntity together. Assuming your Block has been created and saved to a local variable DEMO_BLOCK, you would create the matching BlockEntityType with the line below. In this tutorial, the ID of the block entity is tutorial:demo_block_entity.

The BlockEntityType should be registered in your onInitialize method, this is to ensure it gets registered at the correct time.

public static BlockEntityType<DemoBlockEntity> DEMO_BLOCK_ENTITY;
 
@Override
public void onInitialize() {
    DEMO_BLOCK_ENTITY = Registry.register(Registry.BLOCK_ENTITY_TYPE, "tutorial:demo_block_entity", FabricBlockEntityTypeBuilder.create(DemoBlockEntity::new, DEMO_BLOCK).build(null));
}

Connecting a Block Entity to a Block

Once your BlockEntityType has been created and registered, you'll need a block that is associated with it. You can do this by implementing BlockEntityProvider and overriding createBlockEntity. Each time your block is placed, your Block Entity will spawn alongside it.

public class DemoBlock extends Block implements BlockEntityProvider {
 
    [...]
 
    @Override
    public BlockEntity createBlockEntity(BlockPos pos, BlockState state) {
        return new DemoBlockEntity(pos, state);
    }
}

Serializing Data

If you want to store any data in your BlockEntity, you will need to save and load it, or it will only be held while the BlockEntity is loaded, and the data will reset whenever you come back to it. Luckily, saving and loading is quite simple - you only need to override writeNbt() and readNbt().

writeNbt() returns a NBTCompound, which should contain all of the data in your BlockEntity. This data is saved to the disk and also send through packets if you need to sync your BlockEntity data with clients. It is very important to call the default implementation of writeNbt, as it saves “Identifying Data” (position and ID) to the tag. Without this, any further data you try and save will be lost as it is not associated with a position and BlockEntityType. Knowing this, the example below demonstrates saving an integer from your BlockEntity to the tag. In the example, the integer is saved under the key “number” - you can replace this with any string, but you can only have one entry for each key in your tag, and you will need to remember the key in order to retrieve the data later.

public class DemoBlockEntity extends BlockEntity {
 
    // Store the current value of the number
    private int number = 7;
 
    public DemoBlockEntity(BlockPos pos, BlockState state) {
        super(ExampleMod.DEMO_BLOCK_ENTITY, pos, state);
    }
 
    // Serialize the BlockEntity
    @Override
    public NbtCompound writeNbt(NbtCompound tag) {
        super.writeNbt(tag);
 
        // Save the current value of the number to the tag
        tag.putInt("number", number);
 
        return tag;
    }
}

In order to retrieve the data later, you will also need to override readNbt. This method is the opposite of writeNbt - instead of saving your data to a NBTCompound, you are given the tag which you saved earlier, enabling you to retrieve any data that you need. As with writeNbt, it is essential that you call super.readNbt, and you will need to use the same keys to retrieve data that you saved. To retrieve, the number we saved earlier, see the example below.

// Deserialize the BlockEntity
@Override
public void readNbt(NbtCompound tag) {
    super.readNbt(tag);
    number = tag.getInt("number");
}

Once you have implemented the writeNbt and readNbt methods, you simply need to ensure that they are called at the right time. Whenever your BlockEntity data changes and needs to be saved, call markDirty(). This will force the writeNbt method to be called when the world is next saved by marking the chunk which your block is in as dirty. As a general rule of thumb, simply call markDirty() whenever you change any custom variable in your BlockEntity class.

If you need to sync some of your BlockEntity data to the client, for purposes such as rendering, you should implement BlockEntityClientSerializable from the Fabric API. This class provides the fromClientTag and toClientTag methods, which work much the same as the previously discussed readNbt and writeNbt methods, except that they are used specifically for sending to and receiving data on the client.

Block Entity Ticking

1.17 has added static ticking, where before you'd implement the Tickable interface. For your block to tick, you would normally use getTicker in Block, linking back to a Block Entity. See below for the common implementation of ticking.

In your Block class:

public class DemoBlock extends BlockWithEntity {
    [...]
    @Override
    public BlockRenderType getRenderType(BlockState state) {
        // With inheriting from BlockWithEntity this defaults to INVISIBLE, so we need to change that!
        return BlockRenderType.MODEL;
    }
    @Override
    public <T extends BlockEntity> BlockEntityTicker<T> getTicker(World world, BlockState state, BlockEntityType<T> type) {
        return checkType(type, ExampleMod.DEMO_BLOCK_ENTITY, (world1, pos, state1, be) -> DemoBlockEntity.tick(world1, pos, state1, be));
    }

And in your Block Entity:

public class DemoBlockEntity extends BlockEntity {
    public DemoBlockEntity(BlockPos pos, BlockState state) {
        super(ExampleMod.DEMO_BLOCK_ENTITY, pos, state);
    }
    public static void tick(World world, BlockPos pos, BlockState state, DemoBlockEntity be) {
        [...]
    }
}

Overview

You should now have your very own BlockEntity, which you can expand in various ways to suit your needs. You registered a BlockEntityType, and used it to connect your Block and BlockEntity classes together. Then, you implemented BlockEntityProvider in your Block class, and used the interface to provide an instance of your new BlockEntity. You also learned how to save data to your BlockEntity, how to retrieve for use later, and finally, you learned how to add ticking to it.

tutorial/blockentity.1626968589.txt.gz · Last modified: 2021/07/22 15:43 by fireblast